Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
BMC Pregnancy Childbirth ; 22(1): 5, 2022 Jan 03.
Article in English | MEDLINE | ID: covidwho-1605314

ABSTRACT

BACKGROUND: The Salud Mesoamérica Initiative (SMI) is a public-private collaboration aimed to improve maternal and child health conditions in the poorest populations of Mesoamerica through a results-based aid mechanism. We assess the impact of SMI on the staffing and availability of equipment and supplies for delivery care, the proportion of institutional deliveries, and the proportion of women who choose a facility other than the one closest to their locality of residence for delivery. METHODS: We used a quasi-experimental design, including baseline and follow-up measurements between 2013 and 2018 in intervention and comparison areas of Guatemala, Nicaragua, and Honduras. We collected information on 8754 births linked to the health facility closest to the mother's locality of residence and the facility where the delivery took place (if attended in a health facility). We fit difference-in-difference models, adjusting for women's characteristics (age, parity, education), household characteristics, exposure to health promotion interventions, health facility level, and country. RESULTS: Equipment, inputs, and staffing of facilities improved after the Initiative in both intervention and comparison areas. After adjustment for covariates, institutional delivery increased between baseline and follow-up by 3.1 percentage points (ß = 0.031, 95% CI -0.03, 0.09) more in intervention areas than in comparison areas. The proportion of women in intervention areas who chose a facility other than their closest one to attend the delivery decreased between baseline and follow-up by 13 percentage points (ß = - 0.130, 95% CI -0.23, - 0.03) more than in the comparison group. CONCLUSIONS: Results indicate that women in intervention areas of SMI are more likely to go to their closest facility to attend delivery after the Initiative has improved facilities' capacity, suggesting that results-based aid initiatives targeting poor populations, like SMI, can increase the use of facilities closest to the place of residence for delivery care services. This should be considered in the design of interventions after the COVID-19 pandemic may have changed health and social conditions.


Subject(s)
Delivery, Obstetric , Health Promotion , Health Services Accessibility , Maternal Health Services , Prenatal Care , Adolescent , Adult , Female , Guatemala , Health Facilities , Honduras , Humans , Middle Aged , Nicaragua , Pregnancy , Pregnancy Outcome , Young Adult
2.
J Virol ; 95(23): e0097421, 2021 11 09.
Article in English | MEDLINE | ID: covidwho-1410203

ABSTRACT

The global COVID-19 pandemic has sparked intense interest in the rapid development of vaccines as well as animal models to evaluate vaccine candidates and to define immune correlates of protection. We recently reported a mouse-adapted SARS-CoV-2 virus strain (MA10) with the potential to infect wild-type laboratory mice, driving high levels of viral replication in respiratory tract tissues as well as severe clinical and respiratory symptoms, aspects of COVID-19 disease in humans that are important to capture in model systems. We evaluated the immunogenicity and protective efficacy of novel rhesus adenovirus serotype 52 (RhAd52) vaccines against MA10 challenge in mice. Baseline seroprevalence is lower for rhesus adenovirus vectors than for human or chimpanzee adenovirus vectors, making these vectors attractive candidates for vaccine development. We observed that RhAd52 vaccines elicited robust binding and neutralizing antibody titers, which inversely correlated with viral replication after challenge. These data support the development of RhAd52 vaccines and the use of the MA10 challenge virus to screen novel vaccine candidates and to study the immunologic mechanisms that underscore protection from SARS-CoV-2 challenge in wild-type mice. IMPORTANCE We have developed a series of SARS-CoV-2 vaccines using rhesus adenovirus serotype 52 (RhAd52) vectors, which exhibit a lower seroprevalence than human and chimpanzee vectors, supporting their development as novel vaccine vectors or as an alternative adenovirus (Ad) vector for boosting. We sought to test these vaccines using a recently reported mouse-adapted SARS-CoV-2 (MA10) virus to (i) evaluate the protective efficacy of RhAd52 vaccines and (ii) further characterize this mouse-adapted challenge model and probe immune correlates of protection. We demonstrate that RhAd52 vaccines elicit robust SARS-CoV-2-specific antibody responses and protect against clinical disease and viral replication in the lungs. Further, binding and neutralizing antibody titers correlated with protective efficacy. These data validate the MA10 mouse model as a useful tool to screen and study novel vaccine candidates, as well as the development of RhAd52 vaccines for COVID-19.


Subject(s)
Adenovirus Vaccines/immunology , Antibodies, Neutralizing/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/prevention & control , Pandemics/prevention & control , SARS-CoV-2/immunology , Adenoviridae Infections/immunology , Adenoviruses, Simian/immunology , Animals , Antibodies, Viral/immunology , Disease Models, Animal , Female , Humans , Immunogenicity, Vaccine , Macaca mulatta/virology , Mice , Mice, Inbred BALB C , SARS-CoV-2/pathogenicity , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL